1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Brent Beaurepaire edited this page 2025-02-15 09:55:01 -08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion criteria to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement discovering to boost thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key distinguishing function is its support knowing (RL) step, which was used to fine-tune the design's reactions beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adapt better to user feedback and goals, eventually improving both importance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, indicating it's geared up to break down complex queries and reason through them in a detailed manner. This directed thinking process allows the design to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has the market's attention as a versatile text-generation design that can be incorporated into different workflows such as representatives, logical reasoning and data analysis tasks.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion parameters, allowing effective reasoning by routing questions to the most appropriate expert "clusters." This method permits the design to concentrate on various issue domains while maintaining overall effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 model to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective models to imitate the habits and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, prevent hazardous content, and trademarketclassifieds.com evaluate designs against essential safety requirements. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to different usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limit boost, produce a limitation boost demand raovatonline.org and connect to your account team.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid damaging material, and examine models against essential security criteria. You can carry out safety measures for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general flow involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 model.

The model detail page provides important details about the model's abilities, rates structure, and execution standards. You can discover detailed use instructions, consisting of sample API calls and code bits for integration. The design supports numerous text generation jobs, consisting of material development, code generation, and concern answering, using its reinforcement finding out optimization and CoT reasoning capabilities. The page also includes release choices and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be prompted to configure the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a variety of circumstances (between 1-100). 6. For example type, choose your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can configure innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role approvals, and encryption settings. For the majority of use cases, the default settings will work well. However, for production releases, you might want to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start using the model.

When the deployment is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive interface where you can experiment with different prompts and change design parameters like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal outcomes. For instance, content for reasoning.

This is an outstanding way to check out the design's reasoning and text generation abilities before incorporating it into your applications. The playground supplies instant feedback, helping you comprehend how the design reacts to various inputs and letting you tweak your triggers for ideal results.

You can quickly test the design in the playground through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures inference specifications, and sends out a request to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 practical approaches: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the approach that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design browser displays available models, with details like the provider name and design abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card reveals crucial details, consisting of:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if appropriate), indicating that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the model card to see the design details page.

    The model details page consists of the following details:

    - The model name and disgaeawiki.info supplier details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you deploy the model, it's advised to evaluate the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the automatically generated name or produce a customized one.
  1. For Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of circumstances (default: 1). Selecting suitable instance types and counts is vital for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The release process can take several minutes to complete.

    When implementation is complete, your endpoint status will alter to InService. At this point, the design is ready to accept inference demands through the endpoint. You can monitor the release development on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the implementation is complete, you can conjure up the design using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is offered in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Clean up

    To prevent undesirable charges, finish the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the design utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases.
  5. In the Managed releases section, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the correct implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build innovative solutions using AWS services and accelerated compute. Currently, he is concentrated on developing methods for fine-tuning and optimizing the inference efficiency of big language models. In his leisure time, Vivek takes pleasure in hiking, seeing movies, and trying various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building options that assist clients accelerate their AI journey and unlock organization worth.